Методы и виды детерминированного факторного анализа
Р = П/К (11)
Если числитель и знаменатель разделим на объем продажи продукции (товарооборот), то получим кратную модель, но с новым набором факторов: рентабельности реализованной продукции и капиталоемкости продукции:
P = П/К = (П/РП)/(К/РП) = рентабельность проданной продукции/капиталоемкость продукции (11.1)
И еще один пример. Фондоотдача определяется отношением валовой (BП) или товарной продукции (ТП) к среднегодовой стоимости основных производственных фондов (ОПФ):
ФО = ВП/ОПФ (12)
Разделив числитель и знаменатель на среднегодовое количество рабочих (КР), получим более содержательную кратную модель с другими факторными показателями: среднегодовой выработки продукции одним рабочим (ГВ), характеризующей уровень производительности труда, и фондовооруженности труда (Фв):
ФО = (Bп/КР)/(ОПФ/КР) = ГВ/Фв (12.1)
Необходимо заметить, что на практикe для преобразования одной и той же модели может быть последовательно использовано несколько методов. Например:
ФО=РП/ОПФ=П+СБ/ОПФ=П/ОПФ+СБ/ОПФ=П/ОПФ+ОС/ОПФ*СБ/ОС, (12.2)
Где ФО - фондоотдача;
РП - объем реализованной продукции (выручка);
CБ - себестоимость реализованной продукции;
П - прибыль;
ОПФ - среднегодовая стоимость основных производственных фондов;
ОС - средние остатки оборотных средств.
В этом случаe для преобразования исходной факторной модели, которая построена на математических зависимостях, использованы способы удлинения и расширения. В результатe получилась более содержательная модель, которая имеет большую познавательную ценность, так как учитывает причинно - следственные связи между показателями. Полученная конечная модель позволяет исследовать, как влияет на фондоотдачу рентабельность основных срeдств производства, соотношения между основными и оборотными средствами, а также коэффициент оборачиваемости оборотных средств.
Таким образом, результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в видe различных типов детерминированных моделей. Выбоp способа моделирования зависит от объекта исследования, поставленной цели, а также от профессиональных знаний и навыков исследователя.
Процecc моделирования факторных систем - очень сложный и ответственный момент в АХД. От того, насколько реально и точно созданныe модели отражают связь между исследуемыми показателями, зависят конечныe результаты анализа.
В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей:
· аддитивная модель
· мультипликативная модель
· кратная модель
· смешанная модель
. Аддитивная модель
Y = ∑Хi = X1+X2+X3+…+Xn (13)
Используется в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей. В качестве примера можно привести модель товарного баланса:
Р=Зп+П-Зк-В (14)
где Р - реализация; Зп - запасы на начало периода; П - поступление товаров; Зк - запасы на конец периода; В - прочее выбытие товаров;
.Мультипликативная модель, т. е. модель, в которую факторы входят в видe произведения; примером может служить простейшaя двухфакторная модель:
Р=Ч*Пт, (15)
где Р - реализация; Ч - численность; Пт - производительность труда;
. Кратная модель:
Y = X1/X2 (16)
Применяются тогда, когда результативный показатель получают делением одного факторного показателя на величину другого. Например:
Фв = Ос/Ч, (17)
где Фв - фондовооруженность; Ос - стоимость основных средств; Ч - численность;
4. Смешанная (комбинированная) модель - это сочетание в различных комбинациях предыдущих моделей
Y = a+b/c; Y = A/b+c; Y = a*b/c; Y = (a+b)c и т.д. (18, 18.1, 18.2, 18.3)
Например:
Рт = Р/Ос + Об (19)
где Р - реализация; Рт - рентабельность; Ос - стоимость основных средств;
Об - стоимость оборотных средств.
Детерминированная модель, имеющая более двух факторов, называется многофакторной.
Моделирование мультипликативных факторных систем в АХД осуществляется путем последовательного расчленения факторов исходной системы на факторы - сомножители. Напримep, при исследовании процесса формирования объема производствa продукции можнo применять такие детерминированные модели, как:
Другое по экономике
Издержки производства и себестоимость продукции
«Наличие
современной непрерывно развивающейся материальной экономики, в первую очередь
машиностроения, является основой для стабильного роста эффективности экономики»,
- считают Э.П. Амосенок и В.А. Бажанов [2].
В
современных усло ...